The Streamlined Somatics Thymatron®
System Saves Time and Effort

Assure Stimulus with Patented EctoBrain™ Analyzer
Apply Thymapad™ Stimulus Electrodes
Insert Ventil-A™ Mouth Protector
Set Dose with Single %Energy Dial
Select Automatic Optimal Stimulus Program
Read Automatic Seizure Durations
Read Automatic Seizure Quality Measures

It’s Time to Switch to a Thymatron®

Over 1,000,000 Sold

Advanced ECT Is Now Easy...
Thymatron System IV

SAFE, TIME-SAVING DISPOSABLES FOR ECT
THYMAPAD™ Adherent Stimulus Electrodes
Thymapads™ are much faster and easier to use than the old-fashioned disk, headstrap, and jelly method.
They remain exactly where applied and have no exposed metal surfaces to cause accidental shocks. There’s no mess to clean up afterwards, nothing to wash, dry, or sterilize, no sticky hands - just remove them and discard.
Thymapads™ flexibly conform to the surface of the head and fit all Mecta machines too.

VENTIL-A™ Mouth Protector
The Ventil-A™’s thick 100% closed-cell foam construction protects all the teeth. Fits easily under any anesthesia mask and features a non-collapsible air channel for free flow oxygen. One-piece design for dimensional stability and looped end for fast and easy insertion/removal. One size fits >98% of adults.

Both of these single-use ECT aids (US Patent 6039046) save the time and expense of washing and sterilization and eliminate the risk of cross-infection that occurs with re-usable products.
The Thymatron® System IV: Description and Specifications

- **EASIEST SEIZURE INDUCTION WITH THE THYMATRON® SYSTEM IV** Dose for dose, Thymatron® stimuli are 60% more effective for inducing seizures than Meca stimuli, because of the much higher stimulus thresholds found with the Meca (Champattana et al., 2001). This enormous difference results from the substantially and significantly higher stimulus dose of the Thymatron®’s 0.3 ms current relative to the 0.5 ms maximum current of Meca machines, a higher stimulus dose that yields a larger volume of seizure foci in the brain (Swartz, 2002). This advantage alone is a compelling reason to choose the Thymatron® System IV over the Meca Spectrum; it provides a critically important edge for the clinician treating epileptic patients who require two or more stimulations per induction to achieve seizure induction.

- **SPECIAL EEG SIGNAL PROCESSING MEASURES** provide continuous monitoring of level of consciousness and cortical activity: 95% Spectral Edge Frequency, Relative Delta Power, and Median Frequency (Bailine et al., 2007). A comparison of spectral edge, delta power, and bispectral index as EEG measure of alentanil, propofol, and midazolam drug effect. Hans P et al, 2001. Effect of nitrous oxide on the bispectral index and 95% spectral edge frequency during propofol-fentanyl anaesthesia. Sakai S et al, 1999. Hypnotic endpoints vs. the bispectral index, 95% spectral edge frequency and median frequency during propofol infusion with or without fentanyl.

- **ULTRABRIEF 0.3 MS STIMULUS** The Thymatron® System IV was the first modern ECT instrument to introduce ultrabrief ECT and remains the only instrument in the world that can deliver a 0.3 ms ultrabrief stimulus across the entire dosage range, up to and including the maximum allowed dose of 500 joules at 200 Ohm impedance, which is 25% more than Meca’s maximum dose of 500 joules at 0.3 ms.

- **STATE-OF-THE-ART 4-CHANNEL PRINTER** Allowing you to monitor two channels of EEG, plus ECG and EMG (or, if required, to process and store up to 10 minutes of digitized EEG for the special features described here. You can send this data to your IBM PC-compatible computer via a rear-panel serial port for further comprehensive EEG analysis, using Somatics’ proprietary Genie™ IV software.

- **EXTENDED LOWER STIMULUS RANGE** with pulsewidth and frequency to 0.25 or 0.3 ms and 10 allows you to deliver stimuli up to 5 seconds long, to optimize treatment in accordance with research showing greater efficacy of short-pulse duration, extended-duration stimuli (Isenberg et al, 1996).

- **COHERENCE MEASURES** of maximum sustained coherence, and time to peak coherence, interhemispheric cross-correlation measures reported to reflect seizure quality and clinical impact (Krystal & Weiner; 1994; Krystal et al, 1995; Krystal, 1998).

- **AMPLITUDE measures** of maximum sustained EEG power, and average seizure energy, with separate values for early, mid-, and post-ictal seizure phases, found in Decker University group to be important correlates of seizure quality and efficacy (Krystal & Weiner; 1994; Krystal et al, 1995; Krystal, 1998).

- **HEART RATE MEASURES**, including peak heart rate, a key measure of cerebral seizure duration and quality (Larsen, Svartz & Abrams, 1994; Svartz, 1995; 1996; Svartz and Manly, 2000), which reflects the autonomic (brainstem) response to ECT. This is supplemented by continuous digital heart rate monitoring for safety and seizure generalization, with the result printed each second.

- **ALL OF THE ABOVE MEASURES ARE AUTOMATICALLY PRINTED.**

A POWERFUL 32-BIT INTERNAL COMPUTER employs Power Spectral Analysis to process and store up to 10 minutes of digitized EEG for the special features described here. You can send this data to your IBM PC-compatible computer via a rear-panel serial port for further comprehensive EEG analysis, using Somatics’ proprietary Genie™ IV software.

SPECIAL LIMITED-TIME TRADE-IN OFFER

Somatics is pleased to offer a substantial trade-in amount towards a new Thymatron® System IV for any model or age MECTA ECT machine or Thymatron® ECT instrument, without exception. Call us at 800-642-6761 for the details—offers expire April 30, 2012.

SOMATICS SUPPORTS & SERVICES EVERY THYMATRON® IT HAS SOLD

Unlike our competitors, Somatics has always provided support and service for every Thymatron® it has ever sold, including several that are now a quarter-century old. Just e-mail or call us as indicated below to obtain a fair and reasonable quote for servicing your old faithful Thymatron®.

SOMATICS THYMATRON® INSTRUMENTS IMPORTANT RESEARCH TOOLS

Since the Thymatron® was first introduced in 1983 hundreds of research studies have appeared in the medical literature using a Thymatron® instrument. Prominent among these is the series of publications by the multi-hospital CORE research group, a consortium of academic psychiatric centers. In special articles of the last decade the CORE group used Thymatron® ECT instruments to demonstrate the striking efficacy of ECT in the treatment of psychotrophic depression (Petrides et al, 2001), demonstrate that age had a significant positive association with the response to bilateral ECT (IP Connor et al, 2003), show that DSM III melamcholic features are unreliable predictors of ECT response (Fink et al, 2007), find that unipolar and bipolar depressives respond equally well to ECT (Bailine et al, 2010), and report that, although fewer black than white depressed patients received ECT, there was no overall racial difference in treatment response (Williams et al, 2008).

Hundreds of other studies use a Thymatron® instrument to demonstrate, among other things, that ECT given twice a week was equally effective as three times a week, but with fewer cognitive side-effects (Lerer et al, 1995). Research by the Thymatron instrument correlated highly with determinations made by trained physicians (Rosenquist et al., 1998). Antidepressant potency of high-dose right unilateral ECT is equal to bilateral ECT (Abrams et al, 1991). Caffeine lengthened seizure duration but did not change the convulsing threshold (McCall et al, 1993).

Bilateral ECT did not yield any evidence for brain damage as measured by levels of neuron-specific enolase and S-100 protein (Agelink et al, 1997). ECT was nearly four times more effective than transcranial magnetic stimulation (TMS) for major depression (Eranti et al, 2001). None of 7 patients with intracranial masses were neurologically adversely affected by ECT (Rasmussen et al, 2007).

In 28 severely depressed patients given a course of unilateral ECT, only responders showed elevations of N-acetyltransferase, suggesting that ECT exhibits positive neurotrophic effects (Michael et al, 2003).

In 32 consecutive patients seizure durations automatically reported by the Thymatron instrument correlated highly with determinations made by trained physicians (Rosenquist et al, 1998). Antidepressant potency of high-dose right unilateral ECT is equal to bilateral ECT (Abrams et al, 1991). Caffeine lengthened seizure duration but did not change the convulsing threshold (McCall et al, 1993). Bilateral ECT did not yield any evidence for brain damage as measured by levels of neuron-specific enolase and S-100 protein (Agelink et al, 1997). ECT was nearly four times more effective than transcranial magnetic stimulation (TMS) for major depression (Eranti et al, 2001). None of 7 patients with intracranial masses were neurologically adversely affected by ECT (Rasmussen et al, 2007).

In 28 severely depressed patients given a course of unilateral ECT, only responders showed elevations of N-acetyltransferase, suggesting that ECT exhibits positive neurotrophic effects (Michael et al, 2003).
DOES YOUR ECT DEVICE DELIVER THE DOSE YOU SPECIFY? DO YOU TRAIN DOCTORS OR NURSES IN ECT QUALITY?

Device malfunction can cause ineffective ECT treatments or excessive side-effects. Now you can check your ECT device yourself with Somatics' easy-to-use, patented ECTOBRAIN™ II, which performs the same current output check professional engineers use. A single button press instantly tells you if your ECT device is operating safely—providing reassurance and peace of mind. ECTOBRAIN™ II works with any Thymatron.™

ECTOBRAIN™ II also features a Patient Simulator mode that generates EEG, ECG, and EMG signals derived from real patients for testing up to 4 channels of your monitor/printer tracing display and for training and demonstration purposes. Both good- and poor-quality seizures can be selected.

The good-quality seizure shows a high amplitude EEG followed by electrical silence at termination, with a pronounced tachycardia response and an initial low-amplitude EMG response lasting only a few seconds. A device checkup can cost $600 to $900 but real costs are more. How often does the question arise in treating a difficult patient whether the ECT device is stimulating properly or the EEG tracing recording correctly? Most ECT units sent in so far for presumed malfunction have nothing wrong with them! ECTOBRAIN™ II can quickly determine whether or not the device is working. It can reveal problems in technique (e.g., recording electrode application) that are correctable on site or with user-replaceable parts (e.g., lead wires). Just connect the stimulus and recording cables and press the TREAT button as a patient.

The chart recorder of your ECT device will display samples of EEG, ECG, and EMG tracings as described above. The printed report will show the values of the stimulus parameters and other printed variables of your ECT device, including the measured stimulus charge output in mC.

Do you train doctors or nurses in ECT quality?

Satisfaction guaranteed by Somatics’ 30-day unconditional full-satisfaction trial period, 5-year warranty on parts and labor. Special price when ordered together with a Thymatron™ System IV.

Trouble-Shooting with the ECTOBRAIN™ II

Problem How to test using Ectobrain™ II *

No Stimulus output Section I

Impedance test Section II

ECT stimulus cable failure Section III

No EEG, EMG output Section IV

EEG printout Section V

EEG channel doesn’t print Section VI

No Ictal Line Section IV

Special feature doesn’t print Section VI

EEG amplifiers require calibration Section VI

ECT stimulus requires calibration Section VI

* See section of Ectobrain™ II manual on www.thymatron.com downloads page

JUST OUT!

This ground-breaking new test edited by internationally-recognized ECT expert Dr. Conrad M. Swartz comprehensively covers the scientific basis and clinical practice of ECT as well as the latest nonconvulsive electrical and magnetic brain stimulation therapies. The many expert contributors from around the world illustrate compellingly that ECT is now a mainstream psychiatric treatment. The wealth of new and surprising information it contains is certain to provide ECT practitioners with much enjoyable “brain stimulation".

Call David Mirovitch at 1-800-664-5761 for our most attractive price.

• Because each ECT treatment session is STORED IN MEMORY, you can retrieve it if you run out of paper during a treatment—just slip in another pad after the treatment and press a button for a complete printout.

• PATENTED INDEPENDENT SAFETY MONITOR CIRCUIT prevents the patient from receiving an excessive electrical dose regardless of the operation of the regular circuits.

• TRUE EEG RECORDING OF THE MOTOR SEIZURE. Unlike simple movement detectors, the Thymatron® System IV’s EMG can measure seizure muscle activity that is not visible to the naked eye, and which typically continues substantially longer than optically-detectable movements (Couture et al, 1988).

• Because the special computer-automated programs of the Thymatron® System IV are stored on REPLACEABLE MICROCHIPS, updates are easily accomplished on-site via chip replacement. Somatics has already provided 4 advanced microchip upgrades for the System IV including: the ultrabrief 0.25 msec pulsed stimulus program, Genie™ IV computer software, real-time digital EEG monitoring. In comparison, any upgrades to the Mecta spectrum (there have been none) would have required return to the factory.

• The POSTICTAL SUPPRESSION INDEX reports the degree of EEG flattening immediately following the seizure, which correlates with clinical efficacy (Nobler et al, 1993; Krystal & Weiner, 1994; Krystal et al, 1995; Krystal, 1998; Nobler et al, 2000). A recent study of the Thymatron® IV Postictal Suppression Index found that it significantly differentiated ECT remitters from non-remitters (Petrides et al, 2000). The authors concluded: “higher PSI values (more abrupt ending of ictal EEG) are correlated with better clinical outcome of ECT in depression”.

• COMPUTER DETERMINATION AND PRINTOUT OF EEG AND MOTOR SEIZURE DURATIONS. The integral computer-EEG analyzer continually measures the EEG and EMG and automatically prints the EEG and motor seizure durations with precision and reliability (Swartz et al, 1994; Krystal et al, 1995).

• JUST SET ACCORDING TO AGE AND TREAT. Setting the Thymatron® System IV according to the patient’s age facilitates easy selection of the stimulus charge.

• Alternatively, RAPID STIMULUS TITRATION is facilitated with the Thymatron® System IV using a simple method-of-limits procedure (McCall et al, 1993; Kasmussen et al, 1994) that employs research based dose increments: 5, 10, 15, 25, 40, 80, and 100% Energy at your choice of pulselwidth, (see next page for references)

THYMATRON® SYSTEM IV FEATURES CHECKLIST

Thymatron® IV Mecta Spectrum

Choose

0.25 or 0.3 msec Ultrabrief Pulselwidth

Genie™ IV Software

Four-Channel Monitor/Printer

Optimal Stimulus Programs

Maximum Sustained EEG Amplitude

Continuous Digital Heart Rate Monitor

Peak Heart Rate Printout

EEG Coherence Analysis

Seizure Energy Index

Postictal Suppression Index

Maximum Dose Available at all Pulselwidths

Intercital Delta Spike Analysis

Computer EEG Seizure Duration

Computer Motor Seizure Duration

True EMG Monitor

EEG Ictal Line Seizure Indicator

Light-Emitting Elapsed Time Display

Up to 8 Seconds of Stimulation

Change Waveform without Altering Dose

Audible EEG™ monitor

Instant Impedance Test

Extended Seizure Alert

Patented Safety Monitor

Thymatron® Mecta

System IV

Isn’t it Time to Upgrade to a Thymatron®?

U.S. patents 4,269,522, 5,470,007, 6,017,037, 6,036,686, 6,201,301

SPECIFICATIONS

STIMULUS OUTPUT: Current: 1.5 amp constant, limited to 40 volts, isolated from line current.

Frequency: 10 to 70 Hz in 10 Hz increments to 140 Hz for 0.25 msec pulse.

Pulselwidth: 0.25 or 0.3 msec (choose one) and 0.5 - 1.5 msec in 0.25 msec increments.

Duration: 0.14 to 8.0 sec in increments of equal charge.

Maximum output: Standard maximum output across 220 ohms impedance: 564 milliCoulombs, 94.4 joules. Output with double-dose option (where available) across 220 ohms impedance: 1088 mC, 184.8 joules.

RECORDING: 8 unselectable gain positions: 10, 20, 50, 100, 200, and 500 µV/um.

Requirements: 110-130 volts (120 volts AC, 60 Hz, single phase. 100 VA; 220-240 volt, 50/60 Hz schuko)

APPROVALS: Csa, ct, iso 13485:2000, Iec 60601

Download page

www.thymatron.com
A ONE-PAGE COURSE IN ADVANCED ELECTROCONVULSIVE THERAPY

This sample ECT report of the Thymatron® System IV shows that the doctor set the % Energy dial to his patient’s age of 45 years, yielding a 308 mC stimulus charge. The Optimal Stimulus Program selected a 0.3 msec pulsewidth, 70 Hz frequency stimulus delivered over 7.2 sec. Prior to stimulus administration the impedance measured a safe 1440 ohms, which dropped to 260 ohms during stimulus delivery.

The EEG seizure lasted 48 seconds. Peak seizure amplitude was reached at 31 sec, with a mid-ictal amplitude of 264 µV, a Maximum Sustained Power of 77841 µV², and an Average Seizure Energy Index of 72 V² reflecting strong seizure intensity.

Peak Interhemispheric Coherence reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Coherence value of 96% reflected synchronous participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Positcal Suppression Index of 96%.

Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern with a strong midictal phase, pronounced postictal suppression, and a substantial tachycardia response—which is to say, an ECT-induced seizure of high expected clinical efficacy (Abrams, 2002).

GENIE® IV ELECTRONIC PATIENT DATABASE AND EEG MONITORING SYSTEM

Designed to meet your clinical and research needs, the Gene® IV enables you to enter complete patient information at each treatment-based recording, printing or incorporating into a hospital-based patient data sheet.

Equally important is the Gene® IV’s comprehensive real-time display of up to 4 channels of EEG, ECG, and EMG on a PC screen (not included), allowing you to monitor and then store each treatment session.

References

Sackeim et al (1996): The effects of electroconvulsive therapy on quantitative elec-
Roemer et al (1990-91): Relation between pretreatment electroencephalographic
Devanand DP et al (1998): The relative efficiency of altering pulse frequency or
#ENSI
MICROSTIM™ PERIPHERAL NERVE STIMULATOR

This hand-held, solid state, peripheral nerve stimulator weighs only 7 oz. It applies a pulsed 0.2 msec square-wave stimulus through surface electrodes to precisely determine the point at which a safe degree of succinylcholine-induced muscle relaxation has been achieved. The operator has the option of selecting continuous (tetanic) or intermittent (twitch) stimulus modes. Battery powered (9 volt alkaline), it comes in a soft carrying case that clips to pocket or belt. 2.4” x 1.0” x 3.8”
A ONE-PAGE COURSE IN ADVANCED ELECTROCONVULSIVE THERAPY

This sample ECT report of the Thymatron® System IV shows that the doctor set the % Energy dial to his patient’s age of 45 years, yielding a 308 mC stimulus charge. The Optimal Stimulus Program selected a 0.3 msec pulsewidth, 70 Hz frequency stimulus delivered over 7.2 sec. Prior to stimulus administration the impedance measured a safe 1440 ohms, which dropped to 260 ohms during stimulus delivery.

The EEG seizure lasted 48 seconds. Peak seizure amplitude was reached at 31 sec, with a mid-ictal amplitude of 264 µV, a Maximum Stimulated Power of 77841 µV, and an Average Seizure Energy Index of 72 °F reflecting strong seizure intensity.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

This ECT course illustrates the complexity of ECT clinical efficacy and the importance of monitoring seizure parameters to optimize treatment outcomes. The use of the Thymatron® System IV provides a comprehensive real-time display of up to 4 channels of EEG, ECG, and EMG on a PC screen (not included), allowing you to monitor and then store each treatment session.

#FEEDS

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%.

Peak Intermittent Cohereance reached at 33 sec was consistent with the seizure amplitude peak at 31 sec. The Maximum Sustained Cohereance value of 95% reflected synchronized participation of both hemispheres in the seizure. The rapid drop of EEG seizure amplitude to 10 µV postictally yielded a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.

In summary, the record shows a synchronous, high-intensity, well-developed, and well-generalized EEG seizure pattern yielding a high Postictal Suppression Index of 96%. Power Spectral Analysis was not enabled.
Device malfunction can cause ineffective ECT treatments or excessive side-effects. Now you can check your ECT device yourself with Somatics’ easy-to-use, patented ECTOBRAIN™ II, which performs the same current output check professional engineers use. A single button press instantly tells you if your ECT device is operating safely—providing reassurance and peace of mind. ECTOBRAIN™ II works with any Thymatron. ECTOBRAIN™ II also features a Patient Simulator mode that generates EEG, ECG, and EMG signals derived from real patients for testing up to 6 channels of your monitor/printer tracing display and for training and demonstration purposes. Both good- and poor-quality seizures can be selected.

The good-quality seizure shows a high amplitude EEG followed by electrical silence at termination, with a pronounced tachycardia response and a high-amplitude EMG that terminates shortly before EEG termination. The poor-quality recording exhibits a low-amplitude abortive-type EEG seizure lasting only 10 sec, followed by continued low-amplitude EEG fluctuations after termination; there is no tachycardia response, and an initial low-amplitude EMG response lasts only a few seconds.

A device checkup can cost $600 to $800 but real costs are more. How often does the question arise in treating a difficult patient?

Satisfaction guaranteed by Somatics’ 30-day unconditional full-satisfaction trial period. 5-year warranty on parts and labor.

DOES YOUR ECT DEVICE DELIVER THE DOSE YOU SPECIFY?

DO YOU TRAIN DOCTORS OR NURSES IN ECT QUALITY?

Trouble-Shooting with the ECTOBRAIN™ II

Problem	How to test using Ectobrain™ II
No Stimulus output | Section I |
Impedance test error | Section II |
ECT stimulus cable/tape failure | Section III |
No EEG output or EMG output | Section IV |
EEG channel doesn’t print | Section V |
No Ictal Line | Section VI |
Special feature doesn’t print | Section VII |
EEG amplifiers require calibration | Section VIII |
ECT stimulus requires calibration | Section IX |

This groundbreaking new test edited by internationally-recognized ECT expert Dr. Conrad M. Swartz comprehensively covers the scientific basis and clinical practice of ECT as well as the latest nonconvulsive electrical and magnetic brain stimulation therapies. The many expert contributors from around the world illustrate compellingly that ECT is now a mainstream psychiatric treatment. The wealth of new and surprising information it contains is certain to provide ECT practitioners with much enjoyable “brain stimulation”.

Call David Miklowitz at 1(800)645-5765 for our very attractive price.

JUST OUT!

Because each ECT treatment session is STORED IN MEMORY, you can retrieve it if you run out of paper during a treatment—just slip in another pad after the treatment and press a button for a complete printout.

PATENTED INDEPENDENT SAFETY MONITOR CIRCUIT prevents the patient from receiving an excessive electrical dose regardless of the operation of the regular circuits.

TRUE EMG RECORDING OF THE MOTOR SEIZURE. Unlike simple movement detectors, the Thymatron® System IV’s EMG can measure seizure muscle activity that is not visible to the naked eye, and which typically continues substantially longer than optically-detectable movements (Couture et al, 1980).

Because the special computer-automated programs of the Thymatron® System IV are stored on REPLACEABLE MICROCHIPS, updates are easily accomplished on-site via chip replacement. Somatics has already provided 4 advanced microchip upgrades for the System IV including: the ultrabrief 0.25 msec pulsedivle program, Genie™ IV computer software, real-time digital EEG monitoring. In comparison, any upgrades to the Mecta spectrum (there have been none) would have required return to the factory.

The POSTICT SUPPRESSION INDEX reports the degree of EEG flattening immediately following the seizure, which correlates with clinical efficacy (Nobler et al, 1993; Krystal & Weinberger, 1994; Krystal et al, 1995; Krystal, 1998; Nobler et al, 2000). A recent study of the Thymatron® IV’s Postictal Suppression Index found that it significantly differentiated ECT remitters from non-remitters (Detre et al, 2000). The authors concluded: “higher PSI values (more abrupt ending of ictal EEG) are correlated with better clinical outcome of ECT in depression”.

COMPUTER DETERMINATION AND PRINTOUT OF EEG AND MOTOR SEIZURE DURATIONS. The integral computer-EEG analyzer continually measures the EEG and EMG and automatically prints the EEG and motor seizure durations with precision and reliability (Swartz et al, 1994; Krystal et al, 1995).

JUST SET ACCORDING TO AGE AND TREAT. Setting the Thymatron® System IV according to the patient’s age facilitates easy selection of the stimulus charge.

Alternatively, RAPID STIMULUS TITRATION is facilitated with the Thymatron® System IV using a simple method-of-limits procedure (McCall et al, 1993; Rasmussen et al, 1994) that employs research based dose increments: 5, 15, 25, 40, 80, and 100% energy at your choice of pulsewidth, (see next page for references)

DO YOU TRAIN DOCTORS OR NURSES IN ECT QUALITY?

THYMATRON® SYSTEM IV FEATURES CHECKLIST

Thymatron® Mecta System Specturm

Choose 0.25 or 0.3 msec Ultradrief Pulsewidth

Genie™ IV Software

Four-Channel Monitor/Printer

Optimal Stimulus Programs

Maximum Sustained EEG Amplitude

Continuous Digital Heart Rate Monitor

Peak Heart Rate Printout

EEG Coherence Analysis

Seizure Energy Index

Postictal Suppression Index

Maximum Dose Available at all Pulsewidths

Interictal Frontal Delta Analysis

Computer EEG Seizure Duration

Computer Motor Seizure Duration

True ECG Monitor

EEG Ictal Line Seizure Indicator

Light-Emitting Elapsed Time Display

Up to 8 Seconds of Stimulation

Change Waveform without Altering Dose

Audible EEG® monitor

Instant Impedance Test

Extended Seizure Alert

Patented Safety Monitor

Isn’t it Time to Upgrade to a Thymatron®

APPROVALS:

U.S. patents 4626892, 5470957, 6071457, 6202156

Specifications

Stimulus Output: Current: 0.5 Amp constant, limited to 40 mA, isolated from line current.
Frequency: 30 to 70 Hz in 10 Hz increments to 140 Hz for 0.25 msec pulse.
Pulsewidth: 0.25 or 0.3 msec (choose one) and 0.5 - 1.5 msec in 0.25 msec increments.
Duration: 0.1-10 sec in increments of equal charge.
Recording: 8 user-selectable gain positions: 1, 2, 3, 5, 10, 20, 50, and 1000 mV/Div.
Requirements: 110-130 volts (120 volt A.C., 60 Hz, single phase. 100 VA.; 220-240 volt, 50/60 Hz, single phase.

The Thymatron® System IV: Description and Specifications

• EASIEST SEIZURE INDUCTION WITH THE THYMATRON® SYSTEM IV: Dose for dose, Thymatron® stimuli are 40% more effective for inducing seizures than Meca stimuli, because of the much higher seizure thresholds found with the Meca (Champattana et al., 2001). This enormous difference results from the substantially and significantly higher stimulus dose of the Thymatron® 900 mA current relative to the 800 mA maximum current of Meca machines, a higher stimulus dose that yields a larger volume of seizure foci in the brain (Swartz, 2002). This advantage alone is a compelling reason to choose the Thymatron® System IV over the Meca Spectrum; it provides a critically important edge for the clinician in treating gestalt patients who cannot or will not be subjected to seizure induction.

• SPECIAL EEG SIGNAL PROCESSING MEASURES provide continuous monitoring of level of consciousness and cortical activity: 95% Spectral Edge Frequency, Relative Delta Power, and Medium Frequency (Billard V et al., 1997). A comparison of spectral edge, delta power, and bispectral index as EEG measure of alfenantil, propofol, and midazolam drug effect. Hans P et al., 2001: Effect of nitrous oxide on the bispectral index and the 95% spectral edge frequency during propofol-fentanyl anaesthesia. Sakai T et al., 1999: Hypnotic endpoints vs. the bispectral index, 55% spectral edge frequency during propofol infusion with or without fentanyl.

• ELECTRONIC MEDICAL RECORD-KEEPING is simple with the included Genie® IV EMR software. Patient treatment records created and stored with the Genie® IV are easily incorporated into hospital database systems.

• EXTENDED LOWER STIMULUS RANGE with pulsedwidth and frequency to 0.25 or 0.3 msec and 10 Hz allows you to deliver stimuli up to 5 seconds long, to optimize treatment in accordance with research showing greater efficacy of shorter pulswidth, extended-duration stimuli (Isenberg et al., 1996).

• EEG COHERENCE MEASURES of maximum sustained coherence, and time to peak coherence, interhemispheric cross-correlation measures reported to reflect seizure quality and clinical impact (Krystal & Weiner, 1994; Krystal et al., 1995, Krystal, 1998).

• EEG AMPLITUDE measures of maximum sustained EEG power, and average seizure energy, with separate values for early-, mid-, and postictal seizure phases, found by the Duke University group to be important correlates of seizure quality and efficacy (Krystal & Weiner, 1994; Krystal et al., 1995, Krystal, 1998).

• HEART RATE MEASURES, including peak heart rate, a key measure of cerebral seizure duration and quality (Larson, Swartz & Abrams, 1994; Swartz, 1995; 1996; Swartz and Manly, 2000) that reflects the autonomic (brainstem) response to ECT.

• All of the above measures are automatically printed.

• A POWERFUL 32-BIT INTERNAL COMPUTER employs Power Spectral Analysis to process and store up to 10 minutes of digitized EEG for the special features described here. You can send this data to your IBM PC-compatible computer via a rear-panel serial port for further comprehensive EEG analysis, using Somatics’ proprietary Genie® IV software.

SPECIAL LIMITED-TIME TRADE-IN OFFER

Somatics is pleased to offer a substantial trade-in amount towards a new Thymatron® System IV for any model or age MECTA ECT machine or Thymatron® ECT instrument, without exception. Call us at (800) 642-6761 for the details–offer expires April 30, 2010.

SOMATICS SUPPORTS & SERVICES EVERY THYMATRON® IT HAS SOLD

Unlike our competitors, Somatics has always provided support and service for every Thymatron® it has ever sold, including several that are now a quarter-century old. Just e-mail or call us as indicated below to obtain a fair and reasonable quote for servicing your old faithful Thymatron®.

SOMATICS THYMATRON® INSTRUMENTS IMPORTANT RESEARCH TOOLS

Since the Thymatron® was first introduced in 1983 hundreds of research studies have appeared in the medical literature using a Thymatron® instrument. Prominent among these is the series of publications by the multi-hospital CORE research group, a consortium of academic psychiatric centers.

In a series of important articles over the last decade the CORE group used Thymatron® ECT instruments to demonstrate the striking efficacy of ECT in the treatment of psychotic depression (Petrides et al, 2001), determine that age had a strong positive association with the response to bilateral ECT (Parker et al., 2000), show that DSM III melan- cholic features are unreliable predictors of ECT response (Fink et al., 2007), find that unipolar and bipolar depressives respond equally well to ECT (Balline et al., 2010), and report that, although few black than white depressed patients received ECT, there was no overall racial difference in treatment response (Williams et al., 2008). Hundreds of other studies used a Thymatron® instrument to demonstrate, among other things, that ECT given twice a week was equally effective as three times a week, but with fewer cognitive side-effects (Leer et al., 1995).

REFERENCES

Sakai T et al., 1999: Hypnotic endpoints vs. the bispectral index, 55% spectral edge frequency during propofol infusion with or without fentanyl.

Somatics supports & services every Thymatron® instrument correlated highly with determinations made by trained physicians (Rosenquist et al., 1998).

The Choice is Easy (and Smart)! Isn’t it Time to Upgrade to a Thymatron®?
Advanced ECT Is Now Easy...
Thymatron System IV

SAFE, TIME-SAVING DISPOSABLES FOR ECT

THYMAPAD™ Adherent Stimulus Electrodes

Thymapads™ are much faster and easier to use than the old-fashioned disk, headstrap, and jelly method.

They remain exactly where applied and have no exposed metal surfaces to cause accidental shocks. There’s no mess to clean up afterwards, nothing to wash, dry, or sterilize, no sticky hands - just remove them and discard.

Thymapads™ flexibly conform to the surface of the head and fit all Mecta machines too.

VENTIL-A™ Mouth Protector

The Ventil-A™’s thick 100% closed-cell foam construction protects all the teeth. Fits easily under any anesthesia mask and features a non-collapsible air channel for free flow oxygen. One-piece design for dimensional stability and looped end for fast and easy insertion/removal. One size fits >98% of adults.

Both of these single-use ECT aids (US Patent 6039046) save the time and expense of washing and sterilization and eliminate the risk of cross-infection that occurs with re-usable products.

Assure Stimulus with Patented EctoBrain™ Analyzer
Apply Thymapad™ Stimulus Electrodes
Insert Ventil-A™ Mouth Protector
Set Dose with Single %Energy Dial
Select Automatic Optimal Stimulus Program
Read Automatic Seizure Durations
Read Automatic Seizure Quality Measures

IT’S TIME TO SWITCH TO A THYMATRON®!